skip to main content


Search for: All records

Creators/Authors contains: "Gignac, Paul M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Image processing in amniotes is usually accomplished by the thalamofugal and/or tectofugal visual systems. In laterally eyed birds, the tectofugal system dominates with functions such as color and motion processing, spatial orientation, stimulus identification, and localization. This makes it a critical system for complex avian behavior. Here, the brains of chicks,Gallus gallus, were used to produce serial brain sections in either coronal, sagittal, or horizontal planes and stained with either Nissl and Gallyas silver myelin or Luxol fast blue stain and cresyl echt violet (CEV). The emerging techniques of diffusible iodine‐based contrast‐enhanced computed tomography (diceCT) coupled with serial histochemistry in three planes were used to generate a comprehensive three‐dimensional (3D) model of the avian tectofugal visual system. This enabled the 3D reconstruction of tectofugal circuits, including the three primary neuronal projections. Specifically, major components of the system included four regions of the retina, layers of the optic tectum, subdivisions of the nucleus rotundus in the thalamus, the entopallium in the forebrain, and supplementary components connecting into or out of this major avian visual sensory system. The resulting 3D model enabled a better understanding of the structural components and connectivity of this complex system by providing a complete spatial organization that occupied several distinct brain regions. We demonstrate how pairing diceCT with traditional histochemistry is an effective means to improve the understanding of, and thereby should generate insights into, anatomical and functional properties of complicated neural pathways, and we recommend this approach to clarify enigmatic properties of these pathways.

     
    more » « less
  2. Abstract

    Diffusible iodine‐based contrast‐enhanced Computed Tomography (diceCT) is now a widely used technique for imaging metazoan soft anatomy. Turtles present a particular challenge for anatomists; gross dissection is inherently destructive and irreversible, whereas their near complete shell of bony plates, covered with keratinous scutes, presents a barrier for iodine diffusion and significantly increases contrast‐enhanced CT preparation time. Consequently, a complete dataset visualizing the internal soft anatomy of turtles at high resolution and in three dimensions has not yet been successfully achieved. Here we outline a novel method that augments traditional diceCT preparation with an iodine injection technique to acquire the first full body contrast‐enhanced dataset for the Testudines. We show this approach to be an effective method of staining the soft tissues inside the shell. The resulting datasets were processed to produce anatomical 3D models that can be used in teaching and research. As diceCT becomes a widely employed method for nondestructively documenting the internal soft anatomy of alcohol preserved museum specimens, we hope that methods applicable to the more challenging of these, such as turtles, will contribute toward the growing stock of digital anatomy in online repositories.

     
    more » « less
  3. Abstract

    To date, several studies describe post‐hatching ontogenetic variation in birds; however, none of these studies document and compare ontogenetic variation of the entire skull in multiple avian species. Therefore, we studied ontogenetic skull variation of two bird species with very different ecologies,Pica pica, andStruthio camelus, using μCT based 3D reconstructions. For each specimen, we performed bone‐by‐bone segmentation in order to visualize and describe the morphological variation of each bone during ontogeny and estimated the average sutural closure of the skulls to identify different ontogenetic stages. Although bone fusion ofP.picaoccurs more rapidly than that ofS.camelusthe general sequence of bone fusion follows a similar trend from posterior to anterior, but a more detailed analysis reveals some interspecific variation in the fusion patterns. Although growth persists over a longer period inS.camelusthan inP.picaand adults of the former species are significantly larger, the skull of the most matureS.camelusis still less fused than that ofP.pica. Different growth and fusion patterns of the two species indicate that the interspecific ontogenetic variation could be related to heterochronic developments. Nevertheless, this hypothesis needs to be tested in a broader phylogenetic framework in order to detect the evolutionary direction of the potential heterochronic transformations.

     
    more » « less
  4. Effective interpretation of historical selective regimes requires comprehensive in vivo performance evaluations and well-constrained ecomorphological prox- ies. The feeding apparatus is a frequent target of such evolutionary studies due to a direct relationship between feeding and survivorship, and the durability of craniodental elements in the fossil record. Among vertebrates, behaviors such as bite force have been central to evaluation of clade dynamics; yet, in the absence of detailed performance studies, such evaluations can misidentify potential selective factors and their roles. Here, we combine the results of a total-clade performance study with fossil-inclusive, phylogenetically informed methods to assess bite-force proxies throughout mesoeucrocodylian evolution. Although bite-force shifts were previously thought to respond to changing rostrodental selective regimes, we find body-size dependent conservation of performance proxies throughout the history of the clade, indicating stabilizing selection for bite-force potential. Such stasis reveals that mesoeucrocodylians with dietary ecologies as disparate as herbivory and hypercarnivory maintain similar bite-force-to-body-size relationships, a pattern which contrasts the pre- cept that vertebrate bite forces should vary most strongly by diet. Furthermore, it may signal that bite-force conservation supported mesoeucrocodylian craniodental disparity by providing a stable performance foundation for the exploration of novel ecomorphospace. 
    more » « less
  5. Abstract

    The evolutionary history of vertebrates is replete with emergence of novel brain morphologies, including the origin of the human brain. Existing model organisms and toolkits for investigating drivers of neuroanatomical innovations have largely proceeded on mammals. As such, a compelling non‐mammalian model system would facilitate our understanding of how unique brain morphologies evolve across vertebrates. Here, we present the domestic chicken breed, white crested Polish chickens, as an avian model for investigating how novel brain morphologies originate. Most notably, these crested chickens exhibit cerebral herniation from anterodorsal displacement of the telencephalon, which results in a prominent protuberance on the dorsal aspect of the skull. We use a high‐density geometric morphometric approach on cephalic endocasts to characterize their brain morphology. Compared with standard white Leghorn chickens (WLCs) and modern avian diversity, the results demonstrate that crested chickens possess a highly variable and unique overall brain configuration. Proportional sizes of neuroanatomical regions are within the observed range of extant birds sampled in this study, but Polish chickens differ from WLCs in possessing a relatively larger cerebrum and smaller cerebellum and medulla. Given their accessibility, phylogenetic proximity, and unique neuroanatomy, we propose that crested breeds, combined with standard chickens, form a promising comparative system for investigating the emergence of novel brain morphologies.

     
    more » « less
  6. Abstract

    Extant cassowaries (Casuarius) are unique flightless birds found in the tropics of Indo‐Australia. They have garnered substantial attention from anatomists with focus centered on the bony makeup and function of their conspicuous cranial casques, located dorsally above the orbits and neurocranium. The osteological patterning of the casque has been formally described previously; however, there are differing interpretations between authors. These variable descriptions suggest that an anatomical understanding of casque anatomy and its constituent elements may be enhanced by developmental studies aimed at further elucidating this bizarre structure. In the present study, we clarify casque osteology of the southern cassowary (C. casuarius) by detailing casque anatomy across an extensive growth series for the first time. We used micro‐computed tomography (μCT) imaging to visualize embryonic development and post‐hatching ontogeny through adulthood. We also sampled closely related emus (Dromaius novaehollandiae) and ostriches (Struthio camelus) to provide valuable comparative context. We found that southern cassowary casques are comprised of three paired (i.e., nasals, lacrimals, frontals) and two unpaired elements (i.e., mesethmoid, median casque element). Although lacrimals have rarely been considered as casque elements, the contribution to the casque structure was evident in μCT images. The median casque element has often been cited as a portion of the mesethmoid. However, through comparisons between immatureC. casuariusandD. novaehollandiae, we document the median casque element as a distinct unit from the mesethmoid.

     
    more » « less
  7. Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.

     
    more » « less